Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4-Ethoxycarbonyl-3-hydroxy-3phenylcyclohexanone

Simón Hernández-Ortega, ${ }^{*}$ Federico Jiménez-Cruz, Héctor Ríos-Olivares and Manuel Rubio-Arroyo

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México DF, Mexico
Correspondence e-mail: simonho@servidor.unam.mx
Received 29 November 2000
Accepted 18 December 2000
The title compound, ethyl 2-hydroxy-4-oxo-2-phenylcyclohexanecarboxylate, $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$, was obtained by a MichaelAldol condensation and has the cyclohexanone in a chair conformation. The attached hydroxy, ethoxycarbonyl and phenyl groups are disposed in β-axial, β-equatorial and α-equatorial configurations, respectively. An intermolecular hydrogen bond, with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.874 (2) \AA, links the OH group and the ring carbonyl. Weak intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (ester and ketone), $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (ketone) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{OH}$ hydrogen bonds exist.

Comment

In our current research into the 1,5- to 1,3-diketone rearrangement (Jiménez-Cruz et al., 1998, 2000) versus the consecutive Michael addition-Aldol dehydration, the title compound, (I), was obtained in 68% yield by the reaction of ethyl benzoylacetate and methyl vinyl ketone, using Triton B in anhydrous tetrahydrofuran as the solvent.

(la)

(Ib)

Previously, this conversion was reported by Walker (1955) to give a mixture of products using aqueous tert-butyl alcohol as solvent: (I) as a white powder (21% yield) and the oily compound (II) (55\% yield). Structural studies of (I) have not previously been reported. We describe here the X-ray struc-
ture analysis of (I) in order to observe the configuration of the groups attached to the cyclohexanone ring.

A molecular perspective drawing of (I) is shown in Fig. 1. The crystal structure, with the hydrogen-bonded chains along b, is shown in Fig. 2, and selected bond distances and angles are given in Table 1. The molecule consists of a cyclohexanone ring, which displays the chair conformation, and hydroxy, phenyl and ethoxycarbonyl groups, which adopt β-axial, α-equatorial and β-equatorial configurations, respectively.

Figure 1
A molecular view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

By comparing (I) with similar 4-substituted 3-phenylcyclohexanones described in the Cambridge Structural Database (CONQUEST, Version 1.0; Cambridge Structural Database, 2000), we found that 4-ethoxycarbonyl-3-ethoxypropanoyl-3phenylcyclohexanone, (III) (Brunner \& Maas, 1995), showed a phenyl group in a β-axial position and an ethoxycarbonyl group in an α-axial position, but in 4-cyano-4-tert-butoxy-carbonyl-3,5-diphenylcyclohexanone, (IV) (Rowland et al., 1998), and 5-hydroxy-5-methyl-2,4-bis(methylcarbamoyl)-3-(3-nitrophenyl)cyclohexanone, (V) (Ravikumar \& Mehdi, 1993), the phenyl groups are disposed in α-equatorial positions.

The $\mathrm{C} 1(=\mathrm{O} 1)-\mathrm{C} 2-\mathrm{C} 6$ fragment in the cyclohexanone ring is practically planar [mean deviation 0.0038 (6) \AA] and the $\mathrm{C} 1=\mathrm{O} 1$ bond distance $[1.220$ (3) $\AA]$ is within the normal range, similar results being found in (III) and (IV).

The phenyl group at C3 is planar [mean deviation 0.0017 (6) \AA] and it is inclined at an angle of $86.09(8)^{\circ}$ to the best plane described by C1, C2, C4 and C5 [mean deviation 0.0138 (6) \AA]. This value is larger than those described in the other 3-phenylcyclohexanones cited above [81.4 ${ }^{\circ}$ in (III), 61.6° in (IV) and 77° in (V)]. The deviation from a right angle in (I) is caused by both steric and electronic repulsion between the phenyl group and the carboxy group ($\mathrm{C} 13 / \mathrm{O} 3 / \mathrm{O} 4$) in the 4β-equatorial position, which have an angle of $54.52(9)^{\circ}$ between them. This is similar to the values in (IV) $\left(58.3^{\circ}\right)$ and (V) $\left(53.6^{\circ}\right)$. The plane described by $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4$ and C 5 forms an angle of 39.21 (13) ${ }^{\circ}$ with the ethoxycarbonyl group, which is smaller than in (III) $\left(79.6^{\circ}\right)$, (IV) $\left(90^{\circ}\right)$ or $(V)\left(76.1^{\circ}\right)$.

This orientation of the phenyl group in the cyclohexanone ring, shown in ($\mathrm{I} a$), can be understood by comparison with the other space-orientated structure, ($\mathrm{I} b$), derived from the concerted rotation of the phenyl group around the C3-C7 bond by 90°. PM3 (Dewar et al., 1985) and AM1 (Stewart, 1989) semi-empirical calculations of the optimized geometries using SPARTAN (Wavefunction, 1995) indicated that the orientation found, ($\mathrm{I} a$), is more stable than (Ib) by 14.8 and $17.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, for these methods.

Figure 2
The packing diagram of (I) showing the hydrogen-bonded chains of the molecules along \mathbf{b}.

The molecules in the crystal of (I) are linked by intermolecular $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bonds (Table 2) and are stacked as dimers along the [010] direction. These dimers are joined by different weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular bonds involving the ester and hydroxy groups. These hydrogen bonds contribute to stabilizing the crystal structure (Fig. 2).

Experimental

Compound (I) was prepared by the slow addition of freshly distilled methyl vinyl ketone (0.17 mol) to a solution of ethyl benzoylacetate $(0.13 \mathrm{~mol})$ and Triton B (0.1 mol) in anhydrous tetrahydrofuran (60 ml) under a nitrogen atmosphere at 283 K . After stirring for 6 h (thin-layer chromatography control), the mixture was added to cold water (30 ml). After extraction with dichloromethane ($3 \times 100 \mathrm{ml}$) and washing with water $(2 \times 100 \mathrm{ml})$, the solid crude product was recrystallized from ethanol-water in 68% yield. White crystals of (I) were grown by slow evaporation from an ethanol-water solution (70:30) at room temperature (m.p. 392-394 K).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$
$D_{x}=1.274 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=262.29$
Monoclinic, $P 2_{1} / c$
$a=10.601$ (2) \AA
$b=8.673$ (2) \AA
$c=15.322(5) \AA$
$\beta=103.81$ (2) ${ }^{\circ}$
$V=1368.0(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 40 reflections
$\theta=5.42-24.60^{\circ}$
$\mu=0.092 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.38 \times 0.24 \times 0.10 \mathrm{~mm}$

Data collection

Siemens $P 4 / P C$ diffractometer

$$
h=0 \rightarrow 14
$$

$\omega / 2 \theta$ scans
4191 measured reflections
3996 independent reflections
1517 reflections with $I>2 \sigma(I)$
$k=0 \rightarrow 12$
$l=-21 \rightarrow 20$
3 standard reflections every 97 reflections intensity decay: $<2 \%$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=30^{\circ}$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0481 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.007$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0071 (11)

Refinement

Refinement on F^{2}
$R(F)=0.048$
$w R\left(F^{2}\right)=0.128$
$S=0.765$
3996 reflections
176 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

O1-C1	$1.220(3)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.497(3)$
O2-C3	$1.427(3)$	$\mathrm{C} 3-\mathrm{C} 7$	$1.536(3)$
O3-C13	$1.203(3)$	$\mathrm{C} 4-\mathrm{C} 13$	$1.524(3)$
O4-C13	$1.337(3)$	$\mathrm{C} 7-\mathrm{C} 12$	$1.386(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.496(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.401(3)$
$\mathrm{C} 13-\mathrm{O} 4-\mathrm{C} 14$	$116.98(19)$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$104.75(17)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$122.5(2)$	$\mathrm{C} 7-\mathrm{C} 3-\mathrm{C} 4$	$112.49(16)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$122.9(2)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$	$118.5(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$114.64(18)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 3$	$121.7(2)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 7$	$112.64(18)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 3$	$119.8(2)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	$108.97(17)$		

Table 2
Hydrogen-bonding and short-contact geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.82(3)$	$2.06(3)$	$2.874(2)$	$174(2)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.78	$3.569(3)$	139
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.74	$3.619(3)$	158
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.84	$3.535(3)$	129
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.44	$3.351(3)$	155

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.

The positional parameters of the hydroxy H atom were refined, with a fixed $U_{\text {iso }}(\mathrm{H} 2)=1.2 U_{\text {eq }}(\mathrm{O} 2)$; those of the other H atoms were calculated geometrically and they were refined as riding, with a fixed $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the parent atom and with C -H distances in the range 0.93-0.97 A.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors wish to acknowledge the invaluable technical assistance of Javier Pérez-Flores, Rocío Patiño-Maya and Maribel Paniagua-Ibañez.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1318). Services for accessing these data are described at the back of the journal.

References

Brunner, M. \& Maas, G. (1995). Synthesis, pp. 957-963.
Cambridge Structural Database (2000). Version 5.19. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.

Dewar, M. J. S., Zoebish, E. G. \& Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.
Jiménez-Cruz, F., Maldonado, L. A. \& Cetina, R. (1998). Tetrahedron Lett. 39, 2685-2688.
Jiménez-Cruz, F., Maldonado, L. A., Cetina, R. \& Ríos-Olivares, H. (2000). Synth. Commun. 30, 3439-3450.
Ravikumar, K. \& Mehdi, S. (1993). Acta Cryst. C49, 2027-2030.
Rowland, A. T., Filla, S. A., Coutlangus, M. L., Winemilla, M. D., Chamberlin, M. J., Czulada, G. \& Johnson, S. D. (1998). J. Org. Chem. 63, 43594365.

Sheldrick, G. M. (1990). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stewart, J. J. P. (1989). J. Comput. Chem. 10, 209-221.
Walker, G. N. (1955). J. Am. Chem. Soc. 77, 3664-3667.
Wavefunction (1995). SPARTAN. Version 4.0.2. Wavefunction Inc., Irvine, California, USA.

