Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

# 4-Ethoxycarbonyl-3-hydroxy-3phenylcyclohexanone

# Simón Hernández-Ortega,\* Federico Jiménez-Cruz, Héctor Ríos-Olivares and Manuel Rubio-Arroyo

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México DF, Mexico Correspondence e-mail: simonho@servidor.unam.mx

Received 29 November 2000 Accepted 18 December 2000

The title compound, ethyl 2-hydroxy-4-oxo-2-phenylcyclohexanecarboxylate,  $C_{15}H_{18}O_4$ , was obtained by a Michael– Aldol condensation and has the cyclohexanone in a chair conformation. The attached hydroxy, ethoxycarbonyl and phenyl groups are disposed in  $\beta$ -axial,  $\beta$ -equatorial and  $\alpha$ -equatorial configurations, respectively. An intermolecular hydrogen bond, with an O···O distance of 2.874 (2) Å, links the OH group and the ring carbonyl. Weak intermolecular C– H···O=C (ester and ketone), O–H···O=C (ketone) and C–H···OH hydrogen bonds exist.

### Comment

In our current research into the 1,5- to 1,3-diketone rearrangement (Jiménez-Cruz *et al.*, 1998, 2000) *versus* the consecutive Michael addition–Aldol dehydration, the title compound, (I), was obtained in 68% yield by the reaction of ethyl benzoylacetate and methyl vinyl ketone, using Triton B in anhydrous tetrahydrofuran as the solvent.



Previously, this conversion was reported by Walker (1955) to give a mixture of products using aqueous *tert*-butyl alcohol as solvent: (I) as a white powder (21% yield) and the oily compound (II) (55% yield). Structural studies of (I) have not previously been reported. We describe here the X-ray struc-

ture analysis of (I) in order to observe the configuration of the groups attached to the cyclohexanone ring.

A molecular perspective drawing of (I) is shown in Fig. 1. The crystal structure, with the hydrogen-bonded chains along **b**, is shown in Fig. 2, and selected bond distances and angles are given in Table 1. The molecule consists of a cyclohexanone ring, which displays the chair conformation, and hydroxy, phenyl and ethoxycarbonyl groups, which adopt  $\beta$ -axial,  $\alpha$ -equatorial and  $\beta$ -equatorial configurations, respectively.



#### Figure 1

A molecular view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

By comparing (I) with similar 4-substituted 3-phenylcyclohexanones described in the Cambridge Structural Database (*CONQUEST*, Version 1.0; Cambridge Structural Database, 2000), we found that 4-ethoxycarbonyl-3-ethoxypropanoyl-3phenylcyclohexanone, (III) (Brunner & Maas, 1995), showed a phenyl group in a  $\beta$ -axial position and an ethoxycarbonyl group in an  $\alpha$ -axial position, but in 4-cyano-4-*tert*-butoxycarbonyl-3,5-diphenylcyclohexanone, (IV) (Rowland *et al.*, 1998), and 5-hydroxy-5-methyl-2,4-bis(methylcarbamoyl)-3-(3-nitrophenyl)cyclohexanone, (V) (Ravikumar & Mehdi, 1993), the phenyl groups are disposed in  $\alpha$ -equatorial positions.

The C1(=O1)-C2-C6 fragment in the cyclohexanone ring is practically planar [mean deviation 0.0038 (6) Å] and the C1==O1 bond distance [1.220 (3) Å] is within the normal range, similar results being found in (III) and (IV).

The phenyl group at C3 is planar [mean deviation 0.0017 (6) Å] and it is inclined at an angle of 86.09 (8)° to the best plane described by C1, C2, C4 and C5 [mean deviation 0.0138 (6) Å]. This value is larger than those described in the other 3-phenylcyclohexanones cited above [81.4° in (III), 61.6° in (IV) and 77° in (V)]. The deviation from a right angle in (I) is caused by both steric and electronic repulsion between the phenyl group and the carboxy group (C13/O3/O4) in the  $4\beta$ -equatorial position, which have an angle of 54.52 (9)° between them. This is similar to the values in (IV) (58.3°) and (V) (53.6°). The plane described by C1, C2, C4 and C5 forms an angle of 39.21 (13)° with the ethoxycarbonyl group, which is smaller than in (III) (79.6°), (IV) (90°) or (V) (76.1°).

This orientation of the phenyl group in the cyclohexanone ring, shown in (Ia), can be understood by comparison with the other space-orientated structure, (Ib), derived from the concerted rotation of the phenyl group around the C3-C7 bond by 90°. PM3 (Dewar et al., 1985) and AM1 (Stewart, 1989) semi-empirical calculations of the optimized geometries using SPARTAN (Wavefunction, 1995) indicated that the orientation found, (Ia), is more stable than (Ib) by 14.8 and  $17.8 \text{ kJ mol}^{-1}$ , respectively, for these methods.



### Figure 2

The packing diagram of (I) showing the hydrogen-bonded chains of the molecules along b.

The molecules in the crystal of (I) are linked by intermolecular O2-H2···O1 hydrogen bonds (Table 2) and are stacked as dimers along the [010] direction. These dimers are joined by different weak C-H···O intermolecular bonds involving the ester and hydroxy groups. These hydrogen bonds contribute to stabilizing the crystal structure (Fig. 2).

## **Experimental**

Compound (I) was prepared by the slow addition of freshly distilled methyl vinyl ketone (0.17 mol) to a solution of ethyl benzoylacetate (0.13 mol) and Triton B (0.1 mol) in anhydrous tetrahydrofuran (60 ml) under a nitrogen atmosphere at 283 K. After stirring for 6 h (thin-layer chromatography control), the mixture was added to cold water (30 ml). After extraction with dichloromethane  $(3 \times 100 \text{ ml})$ and washing with water  $(2 \times 100 \text{ ml})$ , the solid crude product was recrystallized from ethanol-water in 68% yield. White crystals of (I) were grown by slow evaporation from an ethanol-water solution (70:30) at room temperature (m.p. 392–394 K).

### Crvstal data

| er ystat data                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{15}H_{18}O_4$ $M_r = 262.29$ Monoclinic, $P2_1/c$ $a = 10.601 (2) \text{ Å}$ $b = 8.673 (2) \text{ Å}$ $c = 15.322 (5) \text{ Å}$ $B = 103.81 (2)^{\circ}$ $V = 1368.0 (6) \text{ Å}^3$ $Z = 4$               | $D_x = 1.274 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation<br>Cell parameters from 40<br>reflections<br>$\theta = 5.42-24.60^{\circ}$<br>$\mu = 0.092 \text{ mm}^{-1}$<br>T = 293 (2) K<br>Prism, colourless<br>$0.38 \times 0.24 \times 0.10 \text{ mm}$                                                                                                                        |
| Data collection                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                  |
| Siemens P4/PC diffractometer<br>$\omega/2\theta$ scans<br>4191 measured reflections<br>3996 independent reflections<br>1517 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.033$<br>$\theta_{max} = 30^{\circ}$ | $h = 0 \rightarrow 14$<br>$k = 0 \rightarrow 12$<br>$l = -21 \rightarrow 20$<br>3 standard reflections<br>every 97 reflections<br>intensity decay: <2%                                                                                                                                                                                                                           |
| Refinement                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                  |
| Refinement on $F^2$<br>R(F) = 0.048<br>$vR(F^2) = 0.128$<br>S = 0.765<br>8996 reflections<br>176 parameters<br>H atoms treated by a mixture of<br>independent and constrained<br>refinement                       | $\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.0481P)^2] \\ &where \ P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{max} = 0.007 \\ \Delta\rho_{max} = 0.18 \text{ e } \text{Å}{}^{-3} \\ \Delta\rho_{min} = -0.17 \text{ e } \text{Å}{}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ &(\text{Sheldrick, 1997}) \\ \text{Extinction coefficient: } 0.0071 (11) \end{split}$ |

# Table 1

Selected geometric parameters (Å, °).

| O1-C1      | 1.220 (3)   | C1-C6     | 1.497 (3)   |
|------------|-------------|-----------|-------------|
| O2-C3      | 1.427 (3)   | C3-C7     | 1.536 (3)   |
| O3-C13     | 1.203 (3)   | C4-C13    | 1.524 (3)   |
| O4-C13     | 1.337 (3)   | C7-C12    | 1.386 (3)   |
| C1-C2      | 1.496 (3)   | C7-C8     | 1.401 (3)   |
|            |             |           |             |
| C13-O4-C14 | 116.98 (19) | O2-C3-C4  | 104.75 (17) |
| O1-C1-C2   | 122.5 (2)   | C7-C3-C4  | 112.49 (16) |
| O1-C1-C6   | 122.9 (2)   | C12-C7-C8 | 118.5 (2)   |
| C2-C1-C6   | 114.64 (18) | C12-C7-C3 | 121.7 (2)   |
| O2-C3-C7   | 112.64 (18) | C8-C7-C3  | 119.8 (2)   |
| O2-C3-C2   | 108.97 (17) |           |             |
|            |             |           |             |

#### Table 2

Hydrogen-bonding and short-contact geometry (Å, °).

| $D-\mathrm{H}\cdots A$    | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------|----------|-------------------------|--------------|---------------------------|
| $O2-H2\cdots O1^i$        | 0.82 (3) | 2.06 (3)                | 2.874 (2)    | 174 (2)                   |
| C6-H6A···O3 <sup>ii</sup> | 0.97     | 2.78                    | 3.569 (3)    | 139                       |
| C8−H8···O3 <sup>ii</sup>  | 0.93     | 2.74                    | 3.619 (3)    | 158                       |
| $C5-H5A\cdots O2^{ii}$    | 0.97     | 2.84                    | 3.535 (3)    | 129                       |
| $C4-H4\cdots O3^{ii}$     | 0.98     | 2.44                    | 3.351 (3)    | 155                       |

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x,  $y - \frac{1}{2}$ ,  $\frac{3}{2} - z$ .

The positional parameters of the hydroxy H atom were refined, with a fixed  $U_{iso}(H2) = 1.2U_{eq}(O2)$ ; those of the other H atoms were calculated geometrically and they were refined as riding, with a fixed  $U_{\rm iso} = 1.2 U_{\rm eq}$  of the parent atom and with C-H distances in the range 0.93–0.97 Å.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL*97.

The authors wish to acknowledge the invaluable technical assistance of Javier Pérez-Flores, Rocío Patiño-Maya and Maribel Paniagua-Ibañez.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1318). Services for accessing these data are described at the back of the journal.

# References

Brunner, M. & Maas, G. (1995). Synthesis, pp. 957-963.

Cambridge Structural Database (2000). Version 5.19. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.

- Dewar, M. J. S., Zoebish, E. G. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902–3909.
- Jiménez-Cruz, F., Maldonado, L. A. & Cetina, R. (1998). Tetrahedron Lett. 39, 2685–2688.
- Jiménez-Cruz, F., Maldonado, L. A., Cetina, R. & Ríos-Olivares, H. (2000). Synth. Commun. 30, 3439–3450.
- Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027-2030.
- Rowland, A. T., Filla, S. A., Coutlangus, M. L., Winemilla, M. D., Chamberlin, M. J., Czulada, G. & Johnson, S. D. (1998). J. Org. Chem. 63, 4359– 4365.
- Sheldrick, G. M. (1990). *SHELXTL/PC*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stewart, J. J. P. (1989). J. Comput. Chem. 10, 209-221.
- Walker, G. N. (1955). J. Am. Chem. Soc. 77, 3664-3667.
- Wavefunction (1995). SPARTAN. Version 4.0.2. Wavefunction Inc., Irvine, California, USA.